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RESONANCE BETWEEN BETATRON AND SYNCHROTRON )
OSCILLATIONS IN A FREE ELECTRON LASER: SRR
A 3-D NUMERICAL STUDY Sl

INTRODUCTION

In this paper, we will examine the resonance between the synchrotron wavenumber,
i.e., the wavenumber associated with the bounce of the electron in the ponderomotive o i

potential well, and twice the betatron wavenumber [1-5]. Betatron oscillations are caused V- -—-4

by the transverse gradient of the wiggler [6-12]. There are a number of different sources
for this resonance. In this paper, we will concentrate on the one caused by the Gaussian R
resonator radiation field first discussed by M. Rosenbluth in Ref. [1]. Another source of
the resonance, described in detail in Ref [5], require, a tapered wiggler, but no; a 3-D
radiation field.

The wavefronts of the Gaussian TEM, resonator radiation are spherical; the curva-

ture is a function of radial and axial position. As electrons execute betatron oscillations in
the transverse direction, the electrons are forced to sample varying wavefronts or a varying
phase of the radiation field. The effect of that on the axial electron motion is eqrivalent
to varying the radiation frequency, which results in a forced driving term in the modified

pendulum equation with a wavenumber of 2k, where ks is the betatron wavenundber.

.
o 'l. 4'.4". .’ l
v IS - .". ‘-'l' "_‘ N

The amplitude of the TEM,, resonator radiation field has a Gaussian profil: in the
radial direction. As electrons execute betatron oscillations in the transverse direction,
the electrons are forced to sample varying radiation amplitudes. In an FEL employing

efficiency enhancement schemes, we find that the amplitude variation also contributes

forced driving terms in the modified pendulnm equation with wavenumber 2k 3.

Betatron oscillations, in a wiggler whose magnetic field amplitude B,, is tapered,
result in a spatially dependent axial clectron momentum. The wavenumber of the axial
momentum variation is also 2ks (see Ref. [5}).

When 2ks becomes approximately equal to the synchrotron wavenumber K, tl e phase
of the electrons in the pouderomotive potential well can become unstable and electrons can

become detrapped from the buckets. Since the principle of efficiency enhancement schemes

[13-16] for the FEL is based on trapping the electrons, the loss of trapped electrons will

Manuscript approved October 17, 1984,

-




Ay
LN

D
A

. AL ALAS an st e

T e

|

reduce the gain. In an FEL oscillator, a slightly reduced gain will increase the start-up
time necessary to reach saturation. A significantly reduced gain per pass will also reduce
the final saturated field amplitude as well.
amplitude as well.

In this paper, we will consider a realistic, arbitrarily tapered, linearly polarized, mag-

netic wiggler. The vector potential of the wiggler is expressed as

w = Ay(2)cosh(ky(2)y) cos(./oz ky(2')d')e;, (1)

where A, (z) and k, (2) are the slowly varying amplitude and wavenumber. We will con-
sider an electron beam that is cold but possesses a finite emittance. The radiation field
initially is taken to be a Gaussian TEM;, resonator mode with slowly varying amplitude
and phase. Modeling of an exact 3-D radiation with higher order modes can be acheived

with minor modifications.

ETATRON OSCILLATIONS IN D WIGGLER

For a linearly polarized wiggler, there exists a constant of motion in the x-direction,

4

lef
;’Az = Pzo: (2)

where the constant p., is the canonical momentum. To obtain the betatron orbits, we will
take A; ~ A, -€;, and p, ~ lflAz + Pzo. The particle motion in the x-direction can be

obtained by integrating the momentum in the x-direction,

T~i+ Bou (2 )coqh(k (2)9) sln(/ ky(2')d2"), (3)
ku(z)
where 2 = 2, + Bz02, Bzo = Pzo/TMoc, § is a function of (yo, Py, 2), 2o and y, are the
initial transverse coordinates, and p., and p,, are the initial transverse momentuins, and
Bor = lelAw[(Ymoc?)
The particle motion in the y-direction is due to the finite z-component of the wiggler

field,
dpy

e
Tl %szz. (4)

------
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We will assume that the fast oscillatory terms are unimportant. Replacing v, by ¢ in the

appropriate places, we find that

d"u

dz? ﬂ:‘:_,_(z)k (z) sinh(2k, (2)7) = 0.

Taking k, (z)g << 1, this equation can be integrated to give

i~y (,l:n:O;) COS(/:"ﬂ(Z')dz’+¢ﬂ),

where k;i = ﬂolkw/\/- Us = (pzo + 'Uo)l/2 y Pyo = pyo/kﬁ(o)'ﬂnocza
and ¢35 = cos™ Yy, /ys)-

RADIATION FIELD

The radiation field can be written in terms of Gaussian resonator modes.

purpose of illustrating this resonance, only the TE My, mode will be considered, i.e.,
Ap(z,y,2,t) =~ —Aoo(2)Goo(z, y, 2) exp(i(kz — wt))é; + c.c.,

where Ago(=) = |Aoo(2)| exp(idoo{z)) is the slowly varying self-consistent complex ampli-

tude,
Goo(z,y, 2) = goo exp(ifoo),

goo(z,y,2) = %exp (%z:)yz)) :

2 2
— —tan-1 Tty
000(2, v, Z) - tan ¢ + ( wz(z) ) ¢

¢ = (2= L)/ is the normalized axial distance, w(z) = w,(1 + ¢?)'/2, w and k = w/ec

are the frequency and wavenumber of the radiation, w, is the waist of the resonator mode, :'-.:'.;::'.‘_f‘f

z, = wlk[2 is the Rayleigh length, and L. is the axial location of the minimum waist. -
Gaussian decomposition of the radiation field has been outlined in several different .

contexts [2,17]. This formulation differs from Ref. [17] in that we include betatrcn oscil- ™

lations and finite beam emittance.
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The slowly varying complex amplitude of the radiation field is governed by

RS

gy s v v ..

daoo(z) s idoo(2) <C05h(kw(3)!])ﬂou(}d}, z) a..,,,.)
b iaFay(2)e 5 e ) (9)

A

‘ where
1 v,

a=2kc2 ¢’

! '

z
(2o, ¥or Pzos Pyosr Yo, 2) = / (k + kw(2') — w/6.)dz' + 800(2, §, 2) + Poo(2) + ¥
]

A
’

'Ti'.- sy

is the phase of the electron in the ponderomotive potential well, ¢, is the initial phase at

z2=0,

((..)) = /:’ d;:’ /dzo/dyo/dpzo/dpyo(---)W(zo,yo,pzo,pyo,nl'o)

is the average over all electrons in the transverse direction and one period of the pon-
deromotive potential wave, W is the initial electron distribution function such that

< (1) >= 1, wy = (47)¢|>n,/m,) /2 is the plasma frequency, n, is the peak clectron

I Eioul A o Lann g an dos e
RTINS AREMD

density, F = /7w? is the 1-dimensional filling factor, o, is the area of the electron beam,

ay = le] Ay /moc? and ago = [e]Ago/m,c?.

EQUATION OF PHASE

The equation of phase for the electron entering the wiggler with the initial condition

(%0+ Yos Pzos Pyos ¥,) in the ponderomotive potential well can be written in the forra

%’_} _K?2_ cosh(k, (z)y)e( B ‘;’)[sinw—sindm], (10)

where

Kuo(e) = (35 sk kaw(Z)laoo(Z)I)m

7 w(z)
is the synchrotron wavenumber of the electrons traveling exactly along the z-axis. The

instantaneous synchrotron wavenumber for the off-axis electrons is

#+#\\"/*
- K,(zo,yo,pzo,Pyos Z) = KSO(z) (COSh(kW(Z)g) xp (— w’(z) )) .
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The resonant phase {'r is determined by the expression

. . ey 1 d%6y
$in Y1201 Yor Pzo) Pyor 2) = sin¥ro + A(Z,§, 2)sin ¥ro + 377 55
 J

k 2 kﬁ(o)
+87’K3 Y ks (z)

d [}, (2)k} (2)]

e (11)

(1 + cos ®)

where

z
Q(1»’091’,ym z) = 2/ kp(-?')dz' + 203,
0

sin Yro() = T(z) /K2 (2)

is the resonant phase of electrons traveling exactly along the z-axis, and

N
is the degree of taper for the efficiency enhancement schemes, which can be achieved
by increasing the wiggler wavenumber, decreasing the amplitude of the wiggler vector
potential, or by applying a DC accelerating electric field. For efficiency enhancement, the
resonant phase has to be positive and less than unity.

In the betatron-synchrotron instability the resonant phase is forced to oscillate at the
wavenumber 2kg. If the wavenumber of the electrons about the separatrix is >~ 2k, then an
instability can occur. As electrons execute betatron oscillations, the electrons experience
a varying radiation amplitude and phase, which are contained in the second and tle third
terms on the right-hand side of Eq. (11). The tapering of the wiggler B,, can also result in
an oscillatory driving term, i.e., the fourth term on the right-hand side of Eq. (11). This
process is discussed in detail in Ref. [5]. If the oscillation frequency of the resonant phase
matches the frequency of the electrons going around the resonant phase, the synchrotron
frequency, then the phase of the electrons in the ponderomotive potential well will oscillate

with increasing amplitude, and eventnally the electrons become detrapped.




The radiation amplitude variation felt by the electrons not only results in a <patially
dependent bucket size, but also in forced oscillations of the resonant phase, the second

term of Eq. (11), where

52 ~2
A(F,§,2) =1 u) .

1
- ———ex
cosh{ky (=)9) p( w?(2)
Since §? and cosh(k,(z)§) are both periodic functions of ®, the coefficient of the second

term in Eq. (11) is also a periodic function of ®.

The variation in phase felt by the electrons, due to the betatron oscillatious, con-

tributes the third term on the right-hand side of Eq. (11). Substituting (6) into (8), we

obtain
e ?;fzo’pyo’ ?) = fo+ fccos® + fssin @, (12)
2
N _Ys kﬁ(o) § 3 2
fc(ympym '-) = w2(z) kﬂ(Z) Zg(l +§2)2 2k3(z) ¢y
2 2
Ys ks(z) [1—¢
]
fs(ympyo-, z) -wz(z) % 1+€2 s
and

N i 2§ g2 -3 ~2 kﬁ(O) %
fo(l'o;yo;p.r.oapyo") - 23 (1+§2)2 [211)2(2) (2 t kﬁ(z) 2 1

w2(z) | 2 1+¢2

We note that each term on the right-hand side of Eq. (12) is highly dependen: on the

+ ﬂﬁoc] :

initial conditions as well as the axial position z. The phase variation term (1/K?)d?8, /dz?
does not have a spatitial variation equal to 2kg, because the coefficients K, f;, f., and f,
are functions of z. Hence, the effectiveness of the phase variation term in driving the
betatron-synchrotron instability is reduced.

The strongest effect of the resonance on the gain is not at K,, = 2k3(0), beczuse the
synchrotron wavelength associated with electrons undergoing betatron oscillation is longer

than that associated with electrons traveling exactly on axis. This is a consequence of

6




the larger radiation field on axis. In addition, the synchrotron wavelength of the electrons

= initially close to the resonant phase g is 27/K,. The synchrotron wavelength. of the

electrons, that were initially trapped further away from the resonant phase, is longer than

27 /K,. Hence, the more accurate resonant condition is
6’6‘5 > Ky, > 2kﬂ. (13)
NUMERICAL EXAMPLES f__:i
: We present numerical results illustrating various properties of this instability. The ::f;‘_ 1
- linearly polarized wiggler amplitude is B,.(0) = 3 kG, and the wavelength is ¢,,(0) = 2.73 e
cm. The wiggler length is L,, = 150 cm, the minimum waist is located at z = 75 ¢<m, and i -.
the electron beam energy is 20.8 MeV. The electron density on axis is n, = 2.5%x10'! em™3, ?
which corresponds to a plasma frequency wp of 2.8 x 10!° sec™!. Radiation wavelength is
10 pm, with a Rayleigh length z, = 62.5 cm and spot size w, = 0.14 cm. The batatron . 4
wavenumber is k3 = 0.03 em™! and the betatron wavelength is Lg = 27 /kg = 21C cm. :a
A Gaussian electron distribution function is chosen: ' 1
o
2 2 + 72 . -4
W:Cexp(—%)exp —&’# , ﬂ
Teb Teb T
where C is the normalization constant, and p,, = 0.
Here we present results where k,, is tapered and a,, is held constant. The taper of &y,

is linear, i.e.,

ku(2) = ku (0)(1 +62),

where § = 1/L., and L. is the length the wavenumber increases by k,(0). For . linear

variation of k,,, sin 1"g, is not a constant. The constant § is chosen such that siny g,(z =

L, ) = 0.4. The parameters that will be varied are the betatron-synchrotron waveaumber

mismatch ratio T
.’ - p= _K”(z = LC) T
o 2kp(0) T

- and the radius of the electron beam r,s.
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Figures 1-6 show the results obtained with p = 2.0 and r., = u',. For these parameters,
the second term on the right-hand side of Eq. (11) is the largest oscillatory driving term.
For electrons with the same initial conditions (r,, ¥,,pyo) but —7 < ¢/, < 7, Figs. 1, 3,5
are plots of > versus d4'/0: and Figs. 2, 4, 6 are plots of ¢’ versus z. Each curve represents
the history of an electroun in the phase space from : =0to : = L,..

Figures 1 and 2 are plots of phase for electrons traveling exactly down the axis, i.e.,
r, =0, y, =0, and p,, = 0. Electrons that are initially trapped remain trapped.

Figures 3 and 4 are plots of phase for electrons with initial conditions z, = w,, y, = 0,
and p,, = 0. These electrons do not execute betatron oscillations. Since they are on the
edge of the radiation beam, the bucket size is reduced, and only 40 of the electrons are
initially trapped, these trapped electrons remain trapped to the end of the wiggler.

Figures 5 and 6 are phase plots for electrons with initial conditions 2, = 0, y, = u,.
and p,, = 0. If these electrons did not undergo betatron oscillations, their phase space
diagrams would be identical to those in Figs. 3 and 4. We notice that 25% of the electrons
become detrapped at z ~ 100 cm =~ 7 /kz{0). Only 20% of the electrons remain trapped
at the end of the wiggler.

The numerical results confirm that the synchrotron wavelengths associated with Figs.
3-6 are much longer than those of Figs. 1-2, because the radiation amplitude felt by
the electrons on axis is larger than the the average radiation field felt by the electrons
undergoing betatron oscillations.

Figure 7 is a plot of normalized relative amplitude gain,

Gn — g/rzb

B g/rzb"'eb—‘o
versus repfi, for p = 1.4, p = 2.0, and p = 2.9. The solid curves are the results with
betatron oscillations, and the dashed curves are the results without betatron oscillations.
The results are almost identical for r.,/u, < 0.8. There is a small reduction of the gain
when re, fu', =1 for p = 2.0 and p = 1.4. The reduction is small because the distribution
function associated with the electrons that take part in the betatron-synchrotron instability

is small.
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g In conclusion, we identified three different sources responsible for the hetatron- syn-
P
L chrotron instability: the radiation phase frout curvature, the transverse radiation ampli-
; tude variation in an FEL with efficiency enhancement schemes, and the tapering of the
i magnetic wiggler field amplitude. For the parameters considered in this paper, the radi-
3
{ ation amplitude variation is found to be the largest driving term. For short wigglers of
!
this example, ie,, L, >~ 157 /kg, and r/uw, < 0.8, the effect of betatron-synchrotron
instability on the gain is negligible.
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Fig. 1. Plot of ¢ versus dy/dz for electrons with initial condition z, = 0, y, = 0, and

Pyo = 0.
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Fig. 17. Plot of normalized relative amplitude gain versus rep/w, for betatron-synchrotron

r';:"- wavenumber mismatch ratio p = 1.4, p = 2.0, and p = 2.9.
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